МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГИМНАЗИЯ № 35

УТВЕРЖДЕНО

директор

Никандрова Е.А.

No 35

№270 - 9 от «29» августа 2025 г.

Дополнительная общеобразовательная общеразвивающая программа естественно-научной направленности «ОЛИМПИАДНАЯ СБОРНАЯ. ИНФОРМАТИКА. 11 КЛАСС»

Возраст обучающихся: 16-18 лет

Срок реализации: 2025-2026 учебный год

Составитель: Коробицына Эльвира Гавриловна Учитель Программа составлена на основе дополнительной образовательной общеразвивающей программы ГБНОУ «СПБ ГДТЮ» «Олимпиадная информатика», разработчики Маврин Павел Юрьевич, педагог дополнительного образования, Станкевич Андрей Сергеевич, педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная (общеразвивающая) программа (далее Программа) имеет техническую направленность и предназначена для учащихся 11 классов, увлекающихся информатикой. Данная программа предназначена для изучения программирования на языке Python в объеме, достаточном для успешного выступления на олимпиадах по информатике для школьников среднего звена.

Актуальность заключается в поддержке и развитии одаренных учащихся в области информатики и программирования. Занятие более углубленно программированием и решение олимпиадных задач позволяет учащимся получить навыки решения задач повышенной сложности. Систематическое участие в соревнованиях помогает сформировать устойчивую мотивацию к продолжению обучения в области информатики и программирования.

Уровень освоения программы: углубленный. В рамках программы результатом является участие в городских, всероссийских олимпиадах по информатике.

Адресат программы: данная программа предназначена для учащихся 16-18 лет, желающих получить опыт участия в городских олимпиадах по информатике.

Цель программы. Развитие и сопровождение обучающихся, одаренных в области информатики и программирования, подготовка к участию в олимпиадах.

Задачи:

- Обучающие
 - о обучить алгоритмам, структурам и методам решения олимпиадных задач;
- о освоить дополнительные разделы информатики, не входящие в базовый школьный курс;
- о обучить применять математические методы на практике при решении нестандартных задач;
 - о обучить навыкам спортивного программирования.
- развивающие
- о развитие эмоциональной устойчивости, формирование навыков саморегуляции при решении задач повышенной сложности
- о развитие логических способностей, умение анализировать условие задачи и выстраивать математическую модель для её решения.
- Воспитательные
 - о воспитать интерес к самообразованию в области информатики.
- о сформировать навыки продуктивной работы в группе при командном решении задач.

Условия реализации программы:

Условия набора и формирования групп: принимаются учащиеся 11 классов знакомые с языком программирования Python. Группа формируются в зависимости от уровня подготовки.

Особенности организации образовательного процесса заключаются в применении следующих образовательных технологий:

-технология развивающего обучения

-технология личностно-ориентированного обучения, что позволяет накапливать каждому ученику свой личностный опыт, развивать качества мышления с заданными свойствами, формировать адекватную самооценку, коммуникативные навыки, умения работать в команде, развивать творческий потенциал.

Сроки реализации программы: 1 учебный год -34 часа

Формы организации деятельности учащихся на занятии: фронтальная (проведение лекции для всей группы), индивидуальная (выполнение индивидуальных заданий), групповая (работа в малых группах).

Материально-техническое оснащение: учебное занятие проводится в компьютерном классе, оснащенном магнитно-маркерной доской, компьютерами, проектором.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ:

Предметные

- о освоят алгоритмы, структуры и методы решения олимпиадных задач;
- о освоят дополнительные разделы информатики, не входящие в базовый школьный курс;
- о научатся применять математические методы на практике при решении нестандартных задач;
- о освоят навыки спортивного программирования.

Метапредметные

- о разовьют эмоциональную устойчивость, сформируют навыки саморегуляции, преодоление стресса, поведения в экстремальных ситуациях;
- о разовьют логические способности, умение анализировать условие задачи и выстраивать математическую модель для её решения.

Личностные

- о сформируют устойчивую мотивацию к самообразованию в области информатики.
- о сформируют навыки продуктивной работы в группе при командном решении задач.

СОДЕРЖАНИЕ ПРОГРАММЫ:

1. Вводное занятие.

Теория: Инструкции по ТБ.

Практика: Тестирование. Определение базового уровня знаний.

2. Оценка сложности и эффективности алгоритма.

Теория:

- Основы анализа эффективности алгоритмов
- Основные классы эффективности
- 3. Алгоритмы поиска.

Теория:

- 🛚 линейный поиск
 - Линейный поиск в массиве.
 - Нахождение минимума, максимума, суммы элементов массива, локальных максимумов и минимумов.
 - Встроенные сортировки
- В бинарный поиск.
 - Требования к данным для применения бинарного поиска
 - Стратегия бинарного поиска
- 🛚 метод двух указателей
- типовой алгоритм поиска по двум указателям и его применение Практика: решение задач по разделам темы
- 4. Структуры данных.

Теория:

- Пинейные структуры данных
 - •Операции с линейными структурами
 - •Преобразование линейных структур данных
- ? Стеки
 - •типовые задачи на применение стеков
 - •операции со стеками
- Очередь, дек
 - •типовые задачи на использование очередей и деков
- Деревья. Куча (heap)
- типовые задачи на использование деревьев и куч. Преимущества хранения данных в виде дерева или кучи

Практика: решение задач по разделам темы.

УЧЕБНЫЙ ПЛАН

к дополнительной общеобразовательной общеразвивающей «ОЛИМПИАДНАЯ СБОРНАЯ. ИНФОРМАТИКА 11 КЛАСС»

п/п	Название раздела, темы	Количество часов			Формы контроля	
11/11		Всего	Теория	Практика		
1.	Вводное занятие.	1	1	0	Опрос, тест	
2.	Оценка сложности и эффективности алгоритма.	1	1	0	Опрос, тест https://stepik.org/lesson/374651/ step/1?unit=362358	
3.	Алгоритмы поиска	1	1	0	Опрос, тест https://stepik.org/lesson/374350/ step/1?unit=362048	
4.	Линейный и бинарный поиск	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376265/ step/1?unit=364075	
5.	Бинарный поиск по ответу	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376266/ step/1?unit=364076	
6.	Метод двух указателей	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376267/ step/1?unit=364077	
7.	Итоговый контест	1		1	https://stepik.org/lesson/376273/st ep/1?unit=364083	
8.	Структуры данных	1	1	0	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376273/ step/1?unit=364083	
9.	Линейные структуры данных	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376268/ step/1?unit=364078	
10.	Стеки	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376269/ step/1?unit=364079	
11.	Очередь, дек	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376273/ step/1?unit=364081	
12.	Деревья. Куча (heap)	4	1	3	Решение задач, https://informatics.msk.ru/ https://stepik.org/lesson/376271/step/1? unit=364080	
13.	Итоговый контест	1		1	https://stepik.org/lesson/376272/step/1? unit=364082	

|--|

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

$N_{\underline{0}}$	Тема занятия	Количество	Форма
1		часов	занятия
1.	Среда программирования РуCharm. Целочисленное деление	1	Лекция
2.	Оценка сложности и эффективности алгоритма.	1	Лекция
3.	Алгоритмы поиска	1	Лекция
4.	Линейный и бинарный поиск	1	Лекция
5.	Линейный и бинарный поиск	1	Практика
6.	Линейный и бинарный поиск	1	Практика
7.	Линейный и бинарный поиск	1	Практика
8.	Бинарный поиск по ответу	1	Лекция
9.	Бинарный поиск по ответу	1	Практика
10.	Бинарный поиск по ответу	1	Практика
11.	Бинарный поиск по ответу	1	Практика
12.	Метод двух указателей	1	Лекция
13.	Метод двух указателей	1	Практика
14.	Метод двух указателей	1	Практика
15.	Метод двух указателей	1	Практика
16.	Итоговый контест	1	Практика
17.	Структуры данных	1	Лекция
18.	Линейные структуры данных	1	Лекция
19.	Линейные структуры данных	1	Практика
20.	Линейные структуры данных	1	Практика
21.	Линейные структуры данных	1	Практика
22.	Стеки	1	Лекция
23.	Стеки	1	Практика
24.	Стеки	1	Практика
25.	Стеки	1	Практика
26.	Очередь, дек	1	Лекция
27.	Очередь, дек	1	Практика
28.	Очередь, дек	1	Практика
29.	Очередь, дек	1	Практика
30.	Деревья. Куча (heap)	1	Лекция
31.	Деревья. Куча (heap)	1	Практика
32.	Деревья. Куча (heap)	1	Практика
33.	Деревья. Куча (heap)	1	Практика
34.	Итоговый контест	1	
	ИТОГО	34	

ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для отслеживания результативности образовательного процесса используются следующие оценочные материалы:

- о вступительное тестирование на вводном занятии;
- о форма фиксации результатов обучения при проведении текущего контроля _по окончании изучения темы;
- о карта диагностики результатов обучения при промежуточном и итоговом контроле —на итоговом занятии.

Виды и формы контроля:

- о входной контроль осуществляется путем выполнения тестового задания на вводном занятии;
- о текущий контроль осуществляется путем решения задач на занятиях;
- о итоговый контроль и подведение итогов реализации программы осуществляется в конце изучения путем анализа результатов, показанных школьником.

Критерии оценки результатов:

```
низкий уровень — выполнено до 30% заданий средний уровень — выполнено от 30% до 70 % заданий высокий уровень — выполнено свыше 70% заданий
```

Для успешного освоения учащимися настоящей программы предлагается построить методику обучения на принципах развивающего обучения.

В основу методики должны быть положены такие принципы развивающего обучения как:

- принцип обучения на высоком уровне трудности;
- принцип ведущей роли теоретических знаний;
- принцип концентрированности организации учебного процесса и учебного материала;
- принцип группового или коллективного взаимодействия;
- принцип полифункциональности учебных заданий;
- принцип взаимосвязи интенсификации умственного развития и содержания учебного материала и др.

Предлагаемая методика опирается на следующие положения когнитивной психологии:

• в процессе обучения возникают не знания, умения и навыки, а их психологический эквивалент — когнитивные структуры, т.е. схемы, сквозь которые ученик смотрит на мир, видит и воспринимает его;

- ведущей детерминантой поведения человека является не стимул как таковой, а знание окружающей человека действительности, усвоение которого происходит в процессе психического отражения;
- из всех способностей человека функция мышления является руководящей, интегрирующей деятельность восприятия, внимания и памяти;
- для всестороннего развития мышления в содержание обучения кроме материалов, непосредственно усваиваемых учащимися, необходимо включать задачи и проблемы теоретического и практического характера, решение которых требует самостоятельного мышления и воображения, многочисленных интеллектуальных операций, творческого подхода и настойчивых поисков;
- для эффективного развития мышления когнитивная психология рекомендует использовать эффект «напряженной потребности».

Такая методика обладает двумя целевыми функциями: выравнивающей и развивающей.

Задачи развивающей функции: научить школьников воспринимать процесс обучения в качестве исследовательской работы; воспитывать стремление к самообучению; формировать систему адекватной самооценки; постоянно поддерживать высокий уровень мотивации к Учению.

Задачи выравнивающей функции: определить входной уровень учащихся по информатике; ликвидировать пробелы в знаниях и умениях учащихся, причем эта задача должна решаться за счет специальной организации учебного процесса параллельно с изучением нового материала, а часто и благодаря ему; на протяжении всего учебного процесса вести мониторинг соответствия знаний и умений учащихся требованиям обязательного базового уровня.

Термин «выравнивающая» не является синонимом термина «уравнивающая»: методика позволяет организовать индивидуальную работу с каждым учащимся. Развивающая функция является ведущей по отношению к выравнивающей, т.к. процесс ликвидации пробелов выполняется в основном учащимися самостоятельно, учитель, используя методику, направляет деятельность ученика.

Самостоятельная работа по обучению программированию подразумевает активную работу школьников с программными средствами автоматической проверки.

ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

Список литературы для педагога и учащихся

- 1. Антти Лааксонен Олимпиадное программирование. М.: ДМК Пресс, 2018.
- 2. Левитин А.В. Алгоритмы: введение в разработку и анализ. М.: Издательский дом «Вильямс», 2006.

- 3. Род Стивенс Алгоритмы: теория и практическое применение. М.: Издательство «Э», 2016.
- 4. http://shujkova.ru/sites/default/files/lec1.pdf
- 4. С.Е. Столяр, А.А. Владыкин, Информатика. Представление данных и алгоритмы, М.: Бином. Лаборатория знаний, 2007
- 5. Шень А. Программирование: теоремы и задачи. М.:МЦНМО, 2007. 264 с.

Интернет-источники

- 1. http://informatics.msk.ru/ Дистанционная подготовка по информатике
- 2. https://timus.online/ архив задач по программированию УрФУ
- 3. http://neerc.ifmo.ru/school/ Олимпиады школьников по информатике в СанктПетербурге
- 4. https://stepik.org Олимпиадное программирование

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 669156940959655819463310575184336563501118402854

Владелец Никандрова Елена Александровна

Действителен С 21.01.2025 по 21.01.2026