МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и молодежной политики Свердловской области
Департамент образования Администрации города Екатеринбурга
МАОУ гимназия № 35

УТВЕРЖДЕНОМАК

директор

Никандрова Е.А. №270 - од от «29» августа 2025 г.

Nº 35

РАБОЧАЯ ПРОГРАММА

учебного курса
«Избранные вопросы физики»
11 класс

Планируемые результаты освоения учебного предмета

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Регулятивные УУД

- Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
 - о ставить цель деятельности на основе определенной проблемы и существующих возможностей;
 - о формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
 - о выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
 - о составлять план решения проблемы (выполнения проекта, проведения исследования);
- Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
 - о оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
 - о работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата.
- Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
 - о пределять критерии правильности (корректности) выполнения учебной задачи;
 - о оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;

- о фиксировать и анализировать динамику собственных образовательных результатов.
- Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности. Обучающийся сможет:
 - о наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
 - о соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
 - о принимать решение в учебной ситуации и нести за него ответственность.

Познавательные УУД

- Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать. Самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
 - о объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
 - о выделять явление из общего ряда других явлений;
 - о определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
 - о строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
 - о излагать полученную информацию, интерпретируя ее в контексте решаемой залачи.
- Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - о обозначать символом и знаком предмет и/или явление;
 - о определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
 - о переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
 - о строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм.
- Смысловое чтение. Обучающийся сможет:
 - о находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
 - о ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
 - о устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
 - о критически оценивать содержание и форму текста.

Коммуникативные УУД

• Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее

решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:

- о принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- о организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
 - о определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
 - о соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
 - о высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
 - о создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
 - о делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
 - о целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ:
 - о выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
 - о выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

- умение на конкретных примерах описывать физические принципы, определяющие устройство и формы проявления материального мира, и понимать эти принципы;
- умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между физикой и другими естественными науками;
- критическая оценка и интерпретация физической и технической информации, содержащейся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;

- умение устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе физических знаний.
- формулирование цели исследования, выдвигать и проверять экспериментально собственные гипотезы о механических особенностях работы устройств той или иной конфигурации и конструкции;
- самостоятельное планирование и проведение экспериментов с соблюдением правил безопасной работы с лабораторным оборудованием;
- интерпретирование данных, полученных в результате проведения технического эксперимента;
- прогнозирование возможности создания и функционирования тех или иных технических механизмов или устройств.

Требования к уровню освоения содержания курса:

В результате изучения курса «Прикладная электродинамика» ученик должен **знать/понимать:**

- закономерности в области электродинамики, и их взаимосвязь;
- процессы электролитической диссоциации и электролиза, понятия электролитов, ионов, катионов и анионов;
- принцип работы и устройства таких оптических приборов как лупа, микроскоп, фотоаппарат, телескоп;
- структуру глаза, недостатки зрения и способы устранения близорукости и дальнозоркости;
- теорию получения света с помощью квантового генератора (лазера);
- принципы действия и технические решения различных видов лазеров
- применению физических эффектов в технических системах;

уметь:

- применять законы Фарадея при решении практических задач;
- строить изображения, получаемые с помощью тонких линз, систем тонких линз;
- строить изображения, получаемые с помощью различных оптических приборов.

Содержание курса

№n\n	Название раздела	Количество	Элементы содержания	
		часов, ч		
1.	Электролитическая	3	Сущность электролитической диссоциации,	
	диссоциация.		сильные и слабые электролиты, зависимость	
			электропроводности жидкостей от концентрации	
			вещества и температуры электролита.	
2.	Электропроводность	3	Растворы солей, кислот, щелочей, расплавы,	
	различных		вольтамперная характеристика электролиза: закон	
	жидкостей.		Ома для электролита; поляризация электродов в	
			электролите.	
3.	Законы электролиза.	6	Первый, второй закон электролиза. Обобщенный	
			закон Фарадея.	
4.	Применение	3	Гальванический элемент, аккумулятор,	
	электролиза в		гальваностегия, гальванопластика,	
	технике и		рафинирование меди, алюминия и т.д.	
	производстве.			
5.	Основные	6	Лупа, микроскоп, фотоаппарат, телескоп, история	
	оптические		изобретения телескопа, устройство и ход лучей в	
	приборы.		трубе Галилея, рефлекторы: линзовые;	
			зеркальные.	
6.	Глаз. Принципы	5	Строение глаза, принципы зрения: ход лучей в	
	зрения. Недостатки		оптической системе глаза, зрение двумя глазами,	
	зрения.		продолжительность зрительного восприятия,	
			утомление глаза, восприятие цветов,	
			чувствительность глаза к различным цветам	
			цветовое утомление, недостатки зрения:	
			близорукость, дальнозоркость, астигматизм.	
7.	Лазер.	6	История создания лазера, рубиновый лазер,	
			газоразрядный лазер, полупроводниковый	
			инжекторный лазер, сравнительный анализ	
			лазерного излучения с излучением от обычных	
			источников, интенсивность лазерного излучения,	
			направленность лазерного излучения,	
			применение лазеров.	
8.	Обобщение	1	Применение законов электродинамики в науке и	
			технике.	

Тематическое планирование

№	Тема	Количество часов				
1. Электролитическая диссоциация (3 часа)						
1.	Сущность электролитической диссоциации.	1				
2.	Сильные и слабые электролиты.	1				
3.	Зависимость электропроводности жидкостей от	1				
	концентрации вещества и температуры электролита.					
	2. Электропроводность различных жидкостей (3 часа)					
4.	Растворы солей, кислот, щелочей, расплавы.	1				
5.	Вольтамперная характеристика электролиза: закон	1				
	Ома для электролита.					
6.	Поляризация электродов в электролите.	1				
	3. Законы электролиза (6 часог	в)				
7.	Первый закон электролиза.	1				
8.	Решение задач на применение первого закона	1				
	электролиза.					
9.	Второй закон электролиза.	1				
10.	Решение задач на применение второго закона	1				
	электролиза.					
11.	Обобщенный закон Фарадея.	1				
12.	Решение задач на применение обобщенного закона	1				
	электролиза.					
	4. Применение электролиза в технике и произ	вводстве (3 часа)				
13.	Гальванический элемент, аккумулятор.	1				
14.	Гальваностегия, гальванопластика.	1				
15.	Рафинирование меди, алюминия и т.д.	1				
5. Основные оптические приборы (6 часов)						
16.	Построение хода лучей в тонких линзах, в системах	1				
	тонких линз. Лупа.					
17.	Изучение хода лучей в системах тонких линз на	1				
	практике.					
18.	Микроскоп, фотоаппарат.	1				
19.	Телескоп, история изобретения телескопа, устройство	1				
	и ход лучей в трубе Галилея.					
20.	Рефлекторы: линзовые; зеркальные.	1				
21.	Области применения оптических приборов в науке и	1				
	технике.					
	6. Глаз. Принципы зрения. Недостатки зрения (5 часа)					
22.	Строение глаза, принципы зрения: ход лучей в	1				
	оптической системе глаза.					
23.	Зрение двумя глазами, продолжительность	1				
	зрительного восприятия, утомление глаза.					
24.	Восприятие цветов, чувствительность глаза к	1				
	различным цветам цветовое утомление.					

25.	Недостатки зрения: близорукость, дальнозоркость,	1			
	астигматизм. Методы коррекции зрения.				
26.	Современные методы коррекции зрения.	1			
7. Лазер (6 часа)					
27.	История создания лазера.	1			
28.	Рубиновый лазер.	1			
29.	Газоразрядный лазер.	1			
30.	Полупроводниковый инжекторный лазер.	1			
31.	Сравнительный анализ лазерного излучения с	1			
	излучением от обычных источников, интенсивность				
	лазерного излучения, направленность лазерного				
	излучения.				
32.	Применение лазеров.	1			
	9. Обобщение (1 час)				
33.	Применение законов электродинамики в науке и	1			
	технике.				

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 460837604057956529703830632163952415623550190523

Владелец Никандрова Елена Александровна

Действителен С 18.10.2023 по 17.10.2024

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 669156940959655819463310575184336563501118402854

Владелец Никандрова Елена Александровна

Действителен С 21.01.2025 по 21.01.2026